If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9j^2+33j+24=0
a = 9; b = 33; c = +24;
Δ = b2-4ac
Δ = 332-4·9·24
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-15}{2*9}=\frac{-48}{18} =-2+2/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+15}{2*9}=\frac{-18}{18} =-1 $
| 4x+3+6=-23 | | 8-9t-4t2=0 | | -6p+32=14 | | 45g^2+60g+20=0 | | m/6-1=3(2+m)+7 | | 41-3=40x | | 2(-5/3y+8/3)-4y=7 | | 3m+2+5m=180 | | -16/3y+16/3=7 | | 3m+2-+5m=180 | | 7(9-z)/2=-z | | 4x/5-2/5=x-1 | | 7(2x+4)-15=15x+13-2x | | 13=y | | 5^(4x)=25 | | X(24-2x)^2=1204 | | 6-x/6=5 | | 9m^2+54m+81=0 | | 0.8*m=32 | | 9.5y=152 | | (z+3/5-1/4=3/4 | | 3x+8=18-10x | | 0.18(y-1)+0.06y=0.16y-0.9 | | 4a+5=2+3.25a4a+5=2+3.25a | | 7y+6=5(y-20 | | 9.13+y=25.13 | | -1(x+1/2)-5/2=-18 | | 0.18(y-1)+0.06=0.16y-0.09 | | 9z+z-5z=30 | | 11x+16=115 | | 5y+1/9=6y+2/9 | | 2x/3=90 |